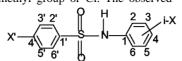
Synthetic, Infrared, 1H and ^{13}C NMR Spectral Studies on N-(2-/3-Substituted Phenyl)-4-Substituted Benzenesulphonamides, $^4-X'C_6H_4SO_2NH(2-/3-XC_6H_4)$, where X'=H, CH_3 , C_2H_5 , F, Cl or Br, and $X=CH_3$ or Cl


B. Thimme Gowda, Mahesha Shetty, and K. L. Jayalakshmi

Department of Post-Graduate Studies and Research in Chemistry, Mangalore University, Mangalagangothri-574 199, Mangalore, India

Reprint requests to Prof. B. T. G.; Fax: 91 824 2287 367; E-mail: gowdabt@yahoo.com.

Z. Naturforsch. **60a.** 106 – 112 (2005): received November 22, 2004

Twenty three N-(2-/3-substituted phenyl)-4-substituted benzenesulphonamides of the general formula, $4\text{-}\mathrm{X'C_6H_4SO_2NH(2-/3-XC_6H_4)}$, where X' = H, CH₃, C₂H₅, F, Cl or Br and X = CH₃ or Cl have been prepared and characterized, and their infrared spectra in the solid state, ¹H and ¹³C NMR spectra in solution were studied. The N-H stretching vibrations, v_{N-H} , absorb in the range 3285-3199 cm⁻¹, while the asymmetric and symmetric SO₂ vibrations vary in the ranges 1376-1309 cm⁻¹ and 1177-1148 cm⁻¹, respectively. The S-N and C-N stretching vibrations absorb in the ranges 945-893 cm⁻¹ and 1304-1168 cm⁻¹, respectively. The compounds do not exhibit particular trends in the variation of these frequencies on substitution either at *ortho* or *meta* positions with either a methyl group or Cl. The observed ¹H and ¹³C chemical shifts of

are assigned to protons and carbons of the two benzene rings. Incremental shifts of the ring protons and carbons due to $-SO_2NH(2-/3-XC_6H_4)$ groups in $C_6H_5SO_2NH(2-/3-XC_6H_4)$, and $4-X'C_6H_4SO_2$ - and $4-X'C_6H_4SO_2NH$ - groups in $4-X'C_6H_4SO_2NH(C_6H_5)$ are computed and employed to calculate the chemical shifts of the ring protons and carbons in the substituted compounds, $4-X'C_6H_4SO_2NH(2-/3-XC_6H_4)$. The computed values agree well with the observed chemical shifts.

Key words: IR; ¹H and ¹³C NMR; N-(Substituted phenyl)-4-substituted Benzenesulphonamides.